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Abstract: Dimensional emotion can better describe rich and fine-grained emotional states than
categorical emotion. In the realm of human–robot interaction, the ability to continuously recognize
dimensional emotions from speech empowers robots to capture the temporal dynamics of a speaker’s
emotional state and adjust their interaction strategies in real-time. In this study, we present an
approach to enhance dimensional emotion recognition through modulation-filtered cochleagram
and parallel attention recurrent neural network (PA-net). Firstly, the multi-resolution modulation-
filtered cochleagram is derived from speech signals through auditory signal processing. Subsequently,
the PA-net is employed to establish multi-temporal dependencies from diverse scales of features,
enabling the tracking of the dynamic variations in dimensional emotion within auditory modulation
sequences. The results obtained from experiments conducted on the RECOLA dataset demonstrate
that, at the feature level, the modulation-filtered cochleagram surpasses other assessed features in
its efficacy to forecast valence and arousal. Particularly noteworthy is its pronounced superiority
in scenarios characterized by a high signal-to-noise ratio. At the model level, the PA-net attains
the highest predictive performance for both valence and arousal, clearly outperforming alternative
regression models. Furthermore, the experiments carried out on the SEWA dataset demonstrate the
substantial enhancements brought about by the proposed method in valence and arousal prediction.
These results collectively highlight the potency and effectiveness of our approach in advancing the
field of dimensional speech emotion recognition.

Keywords: modulation-filtered cochleagram; parallel attention recurrent neural network; dimen-
sional emotion recognition; auditory signal processing; noise-robust

1. Introduction

The utilization of vocal emotion cues proves highly advantageous in helping robots or
virtual agents to understand speakers’ true intentions. Hence, the exploration of emotion
recognition in human speech emerges as an area of significant research interest within the
domain of natural human–robot interaction (HRI). Categorical emotions and dimensional
emotions are the two main ways of describing emotional states. Dimensional emotions
describe emotional states as points in a multidimensional emotional space, with each di-
mension corresponding to a different psychological attribute of the emotion [1]. In HRI,
continuous dimensional emotion can help a robot capture the temporal dynamics of a
speaker’s emotional state and adjust both the manner of the interaction and its content in
real time according to the changing state [2]. Therefore, dimensional emotion can better
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meet the needs of HRI than categorical emotion. Researchers have accordingly shown
an increasing interest in the representation and recognition of dimensional emotions [3].
Valence and arousal are the two most basic primitive forms in the dimensional emotional
space. Valence represents the subjective evaluation or experience of positive or negative
emotions. Arousal represents the high or low intensity level of emotional arousal. Speech
is the most direct and effective way to achieve natural human–machine interaction. There-
fore, dimensional emotion recognition from speech has received extensive attention from
researchers in recent years [3].

In the pursuit of continuous dimensional emotion recognition from speech, the initial
stage involves the extraction of sequential acoustic features that can represent the discrim-
inative characteristics within each short-term segment. These features may be derived
directly from sequential low-level descriptors (LLDs) or from the statistical features of se-
quential LLDs calculated on a block of continuous frames. Temporal dynamic information
plays a crucial role in dimensional emotion recognition, primarily due to the continuous
nature of the target dimensional values and the short time gap between two adjacent
predictions [4]. However, as it is difficult to use LLD-based and functional-based acoustic
features for capturing the temporal dynamics in this task, especially for the supraseg-
mental information of emotional speech. As a result, valence prediction performances
tend to be comparatively lower. Previous studies have shown that temporal modulation,
derived from an auditory perceptual model, is capable of effectively capturing temporal
dynamics for speech perception and understanding [5–7]. Several studies have explored
the extraction of modulation spectral features (MSF) from temporal modulation cues by
computing spectral skewness, kurtosis, and other statistical characteristics. These investi-
gations have demonstrated the noteworthy contribution of MSF to the perception of vocal
emotion. [8,9]. Cognitive neuroscience studies indicate that the auditory cortex encodes
sound into spectral temporal representations of different resolutions [10]. Chen et al. [11]
proposed the multi-resolution cochleagram (MRCG) feature for speech separation, which
extracts cochleagrams of different resolutions to obtain spectral–temporal information at
varying scales. This approach achieved the best separation performance among all evalu-
ated features. Inspired by the MRCG feature, Peng et al. [2] proposed the multi-resolution
modulation-filtered cochleagram (MMCG) feature for dimensional emotion recognition,
which shows significant effects in predicting valence and arousal.

In the realm of speech emotion recognition tasks, several computational models have
been widely employed, including convolutional neural networks (CNNs), recurrent neural
networks (RNNs), Transformers, and attention-based models. Among these, CNNs are of-
ten utilized to extract higher-level feature representations from speech due to their ability to
maintain spectral–temporal invariance [12]. RNNs are favored for their capacity to capture
long-term temporal dependencies within speech sequences and are frequently combined
with CNNs to model sequence dependencies [13,14]. Long short-term memory (LSTM), a
specific type of RNN, has demonstrated considerable success in time series modeling due
to its memory cells that capture long-term temporal dependencies within sequential data.
This has led to its widespread adoption in modeling emotional representations from speech
sequences [15]. Recently, some studies have proposed parallel attention or multi-headed
attention through multi-scale, multi-modal, multi-channel, and other methods to obtain
salient features related to target tasks [16–18]. Zhang et al. [19] proposed a multi-parallel
attention network (MPAN) model for Session-based Recommendation. This innovative
model incorporates a time-aware attention mechanism to capture users’ short-term interests
and a refined multi-head attention mechanism to extract diverse long-term interests from
distinct latent subspaces. Zhu et al. [20] designed an attention-based multi-channel LSTM
architecture to predict influenza outbreaks. Xu et al. [21] integrated multi-scale region
attention into CNNs to emphasize different granularities of emotional features. In the
emotion recognition process, irrelevant emotional information can act as noise, affecting
system performance. Zhang et al. [22] proposed an adaptive interactive attention network
(AIA-Net), a model that leverages text as the primary modality and audio as the auxil-
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iary modality. This model employs interactive attention weights to effectively model the
dynamic interaction between both modalities.

In reference [2], the LSTM recurrent unit outputs of different MCG features were
directly fused without considering their distinctiveness. Within the MMCG features, the
modulation-filtered cochleagram (MCG) features across various scales bring forth different
aspects of emotional expression, with each MCG feature exerting different degrees of
influence on emotional states. To tackle this variability, we propose a parallel attention
recurrent network (PA-net) based on modulation-filtered cochleagram to predict both
valence and arousal dimensions of emotions. Initially, MMCG features are extracted from
speech signals using auditory signal processing. Subsequently, the PA-net employs parallel
recurrent networks that simultaneously utilize multiple recurrent units to capture the
temporal and contextual dependencies of MCG features. Finally, the attention mechanism
is employed to facilitate the fusion of MCG features from different scales.

The main contributions of this study are as follows:

(1) We propose a parallel attention recurrent network for dimensional emotion recogni-
tion to model multiple temporal dependencies from modulation-filtered cochleagrams
at different resolutions.

(2) The results of comprehensive experiments show that the modulation-filtered cochlea-
gram performs better than traditional acoustic-based features and other auditory-
based features for valence and arousal prediction.

(3) The proposed method consistently achieves the highest value of concordance correla-
tion coefficient for valence and arousal prediction across different signal-to-noise ratio
levels, suggesting that this method is more robust to noise overall.

The remainder of this study is organized as follows. In Section 2, we briefly review the
related work. In Section 3, we describe the proposed dimensional emotional recognition
method through modulation-filtered cochleagram and parallel attention recurrent network.
Experimental evaluations and result analysis are presented in Section 4. We conclude the
study in Section 5 with future perspectives.

2. Related Work

In recent decades, there has been significant exploration of categorical models for the
classification of emotions into discrete classes. While these categories effectively encompass
the most prevalent emotional states, real-life emotional responses often exhibit greater
complexity, comprising compound and occasionally ambiguous elements. As an alternative
approach, emotions can be modeled within a dimensional framework, wherein human
affect is represented as a low-dimensional vector, encompassing dimensions such as arousal,
valence, liking, and dominance. This dimensional representation allows for the modeling
of affective states as continuous signals over time, which in turn facilitates the development
of more realistic applications. The typical approach to dimensional emotion recognition
comprises two primary stages: feature extraction and regression modeling. In this section,
we provide a brief overview of the techniques employed in these two stages.

2.1. Speech Feature Extraction

Acoustic-based feature. Currently, acoustic-based features employed for speech emo-
tion recognition can be categorized into three main types: prosody features (including
duration, F0, energy, zero-crossing rate, and speaking rate), sound quality features, and
spectrum-based features (such as LPC, MFCC, and LPCC features). Commonly used
acoustic-based features can be extracted using two strategies: one based on low-level
descriptors (LLDs), which involves capturing features such as 20 ms to 40 ms frame-based
acoustic, spectral, and prosodic characteristics, and another based on High-level Statistics
Functions (HSFs), which computes statistical values over LLD frame sequences to yield
segment-level or utterance-level statistics. LLD features exhibit poor robustness in “in-
the-wild” environments, leading to a sharp decline in recognition performance. On the
other hand, HSF features lack temporal information from speech and are unsuitable for
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constructing regression models for dimensional emotions. Researchers predominantly
focus on extracting salient features from conventional acoustic features to address diverse
emotion recognition tasks. It is worth noting that while El Ayadi et al. [23] have contended
that this approach using HSFs can potentially lead to the loss of temporal information and
may suffer from the diminutive size of the features, Atmaja et al. [24] have demonstrated
that HSFs can yield superior results compared to LLDs in the same dataset and model.
However, utilizing HSF-based acoustic features to capture the temporal dynamics within
this task, especially with regard to suprasegmental information in emotional speech, often
results in lower valence prediction performance.

Auditory-based feature. Based on the physiological and psychological characteristics
of the human auditory system, researchers designed computational auditory models to
simulate the various stages of the auditory processing. These models encompass cochlear
mechanics, inner hair cells (IHC), and auditory nerve and brainstem signal processing.
Dau et al. [25], for instance, proposed an auditory perception model to emulate signal
processing in the human auditory system. In this model, temporal modulation cues are ob-
tained using auditory filtering of the speech signal and modulation filtering of the temporal
amplitude envelope in a cascade manner. The auditory filter mimics the time-frequency
signal decomposition occurring in the cochlea, the temporal amplitude envelope simulates
the transduction of IHC, and the modulation filter simulates the signal modulation of the
inferior colliculus (IC). As a result, this process yields temporal modulation cues with
high-frequency domain resolution, encapsulating rich spectral–temporal information that
enables the perception of variations in loudness, timbre, and pitch in speech. These cues con-
tain rich spectral–temporal information to perceive variations of the loudness, timbre, and
pitch of speech [6] and have been widely used in sound texture perception [26], speaker in-
dividuality perception [27], speech recognition [28,29], acoustic event recognition [30], and
emotion recognition. Psychological acoustic research reveals that after the time-frequency
decomposition of speech signals within the cochlea, spectral–temporal modulation occurs
during transmission, resulting in the formation of a spectral–temporal modulation repre-
sentation [31,32]. This type of modulation plays a crucial role in speech perception and
understanding. Wu et al. [33] employed statistical functions such as spectral kurtosis and
spectral skewness on the spectral–temporal modulation representation to derive MSF for
speech emotion recognition. However, such statistical features lack temporal dynamics and
fail to capture genuine emotional states in speech. Kshirsagar et al. [34] proposed a robust
emotion recognition method that combines bag-of-audio-words and modulation spectral
features to form a modulation frequency spectrum feature bag. Previous study proposed
the MMCG feature to extract high-level auditory representation from temporal modulation
cues for dimensional emotion recognition and designed a multi-channel parallel LSTM
network architecture to track the temporal dynamics of auditory representation sequence.

2.2. Emotion Recognition Model

Convolutional and recurrent neural networks have demonstrated remarkable suc-
cess in the realm of dimensional emotion prediction [35]. Trigeorgis et al. [36] proposed
an innovative approach, employing one-dimensional CNNs to directly acquire high-
level emotion feature representations from speech signals. Subsequently, they harnessed
LSTM networks to capture the temporal dependencies within these representations,
enabling the prediction of dimensional emotions. Similarly, Wöllmer et al. [37] intro-
duced a method grounded in LSTM for the automatic recognition of audio and video
cues. Interestingly, research has shown that leveraging audio information tends to
yield superior results in dimensional emotion prediction compared to relying solely on
video information. Furthermore, the application of attention mechanisms has become
prevalent and proven to be highly effective across various tasks, including machine
translation and image captioning. Yang et al. [38] proposed a CNN-BLSTM network
model designed to monitor continuous changes in emotions within the arousal-valence
two-dimensional space. This model achieves this by integrating inputs from both raw
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waveform signals and spectrograms. To harness the temporal dynamics inherent in
emotions, many studies have employed temporal attention models to capture impor-
tant emotional information within speech utterances. These methods are all designed
to extract various channels and spatial attention maps from LLDs, spectrograms, or
waveforms, and subsequently fuse these attention maps to recognize emotions [38]. The
research on the temporal attention model is mainly concentrated in categorical emotional
recognition. Neumann et al. [39] introduced the attentive convolutional neural network
(ACNN), which employs attention models to recognize emotions from log-Mel filterbank
features. Mirsamadi et al. [40] proposed the attentive recurrent neural network (ARNN),
which takes frame-level LLD inputs to the RNN and then identifies emotions using
local attention as a weighted pooling method. Peng et al. [41] proposed an attention-
based sliding recurrent neural network (ASRNN) to simulate the sustained attention
and selective attention behavior of humans during emotion perception and recognition.
Makhmudov et al. [42] developed a novel emotion recognition model that leverages
attention-oriented parallel CNN encoders to concurrently capture essential features for
use in emotion classification. Karnati et al. [43] proposed a texture-based feature-level
ensemble parallel network (FLEPNet) to address the challenges mentioned previously
and enhance the performance of a facial emotion recognition system.

However, the temporal attention model has relatively few studies in dimension emo-
tional recognition tasks [44]. Avila et al. [45] introduced a feature pooling technique that
combines MSFs and 3D spectral–temporal representations to enhance the robustness of
emotion recognition. Peng et al. [2] proposed the multi-resolution modulation-filtered
cochleagram (MMCG) feature for dimensional emotion recognition, which shows signif-
icant effects in predicting valence and arousal. These methods do not consider using
temporal attention to capture significant emotional regions within the advanced feature
sequences of speech signals. The role of different resolution features of MMCG may be
different. Therefore, attention mechanisms are employed to capture salient emotional
information from multi-resolution MCG features in this study.

3. Research Method
3.1. Overall Structure

The proposed dimensional emotion recognition framework, based on a modulation-
filtered cochleagram and parallel attention recurrent network, is illustrated in Figure 1. The
speech signal s(t) is filtered through the cochlear auditory filterbank, Hilbert transform,
and modulation filterbank to generate the modulation spectrogram representation [32].
From this representation, modulation units are constructed, yielding multi-resolution
modulation-filtered cochleagram features. Subsequently, the parallel attention recurrent
network (utilizing LSTM as recurrent units) extracts high-level auditory modulation fea-
tures from different resolution MCG inputs. The parallel recurrent network establishes
multi-scale dependencies from various-resolution MCG features, and the attention mech-
anism facilitates feature fusion from the output feature representations of the parallel
recurrent network. Finally, employing a multi-task learning approach, the emotion model
is jointly trained to predict valence and arousal dimensions.

3.2. Multi-Resolution Modulation-Filtered Cochleagram

The MCG simulates the auditory processing of the human ear and encodes the 3D
spectral–temporal modulation representation, yielding multi-resolution spectral–temporal
features [2]. The process involves the use of Gammatone cochlear filters to mimic the
cochlear basilar membrane’s decomposition of the speech signal into multiple acoustic
frequency channel signals. The Hilbert transform is then applied to emulate the inner hair
cell’s extraction of the temporal envelope for each channel. Following this, modulation
filters are used to simulate the thalamus’ modulation filtering of the temporal envelope,
generating modulation frequency channel signals. From these modulation channels, mod-
ulation units are created. To extract multi-resolution temporal modulation cues from the
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modulation units and obtain multi-scale information, each modulation unit is convolved
with itself in a discrete convolution operation. Additionally, a non-linear logarithmic
operation is performed on each time-frequency modulation unit to enhance the energy
information of lower frequencies. In the MMCG features, the first and second modu-
lation cochleagram (MCG1, MCG2) respectively yield cochleagram features with high
and low temporal resolutions from the modulation units. By performing 2D convolution
operations with rectangular windows centered on different frequency channels and time
frames composed of MCG1, and subsequently applying mean pooling, the third and fourth
modulation cochleagram (MCG3, MCG4) are obtained. If the window extends beyond
the cochleagram’s range, zero-padding is applied. The MMCG feature employs 1D or 2D
convolution operations (including convolution kernels with various receptive field sizes)
to create multi-resolution features. These features inherently possess strong expressive
capabilities for feature representation.
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Figure 1. Dimensional emotion recognition framework based on modulation-filtered cochleagram
and parallel attention recurrent network.

Figure 2 illustrates the multi-resolution modulation-filtered cochleagrams of clean
speech and noisy speech. The left panel displays the modulation-filtered cochleagram
features of clean speech, while the right panel shows the modulation-filtered cochleagram
under a noise environment with a signal-to-noise ratio (SNR) of 5 dB. In this figure, the
x-axis represents the number of modulation units, and the y-axis represents the auditory
filtering channels. On the left panel, the modulation-filtered cochleagram of the first mod-
ulation channel is shown for the clean speech scenario. The MMCG is constructed by
combining four modulation cochleagrams (MCG1-MCG4) with different spectral–temporal
resolutions. Each modulation channel in this feature contains multi-resolution temporal
information and contextual spectral–temporal information. On the right panel, the same
speech is depicted in a noisy environment with an SNR of 5 dB. Despite significant dis-
tortion in the signal due to the low SNR, the salient features in the modulation-filtered
cochleagram remain discernible even in the presence of noise.
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3.3. Parallel Attention Recurrent Network

The MCG1-MCG4 within MMCG encompasses temporal and contextual information
at various scales. The challenge lies in amalgamating these diverse-scale MCGs cohesively.
Since a single-channel recurrent network cannot simultaneously extract the interdependen-
cies of cochleagram features at different scales, this study introduces a parallel attention
recurrent network (PA-net), as depicted in Figure 3. In this approach, parallel recurrent net-
works are utilized, employing multiple recurrent units concurrently to capture the temporal
and contextual dependencies within cochleagram features. This is facilitated by incorporat-
ing an attention mechanism, enabling the fusion of MCG features across different scales.
MCGk(n, m, i) refers to the n th acoustic frequency channel of the i th modulation unit and
the m th modulation frequency channel in the k th modulation-filtered cochleagram. The
k th modulation-filtered cochleagram is MCGk(n, m, i), indicated as follows:

MCGk(n, m, i) ∈ RN×M×I , (1)

where N, M, and I represent the number of cochlear filter channels, the number of modu-
lation channels, and the temporal modulation units, respectively. Subsequently, different
scales MCGk(n, m, i) are sent to the loop network to generate Sk, and then ReLU is used to
generate the nonlinear transformationR(Sk).

R(Sk) = UkReLU(WkSk + bk), (2)

where, Wk, Uk are the trainable parameter matrix and bk are biased. Using the ReLU
nonlinear function, which has good convergence performance. For each Sk, the αk is
calculated as follows:

αk =
exp(R(Sk))

∑4
k=1 exp(R(Sk))

. (3)

The weight of the recurrent unit output Sk is obtained through the attention module,
and the weighted fusion features are obtained by multiplying with the Sk, which are
expressed as follows:

att_sum = ∑4
k=1 αkSk. (4)
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4. Experimental Results and Analysis
4.1. The Emotional Speech Data

In this study, experiments for dimensional emotion recognition were conducted using
subsets of the RECOLA (remote collaborative and affective interactions) [46] and SEWA
(sentiment analysis in the wild) [47] datasets. Both datasets consist of spontaneous emo-
tional dialogue data and their subsets were used for the 2016 and 2017 AVEC Emotion
Challenge [48,49]. The RECOLA dataset represents a multi-modal corpus, capturing remote
collaborative and affective interactions. This comprehensive dataset comprises 27 French-
speaking individuals and is thoughtfully partitioned into three subsets, each containing
nine participants: a training set, a development set, and a testing set. These partitions
are designed to ensure a balanced representation of various demographic characteristics,
including gender, age, and primary language spoken by the participants. The SEWA dataset
is a collection of mixed audiovisual content, featuring interactions between 64 target speak-
ers and their conversational partners. This dataset is systematically divided into three
distinct subsets: 34 in the training set, 14 in the development set, and 16 in the testing
set. The emotion dimensions, including arousal, valence, and liking, were continuously
annotated for these recorded segments. The primary distinction between RECOLA and
SEWA lies in the annotation frequency, where in RECOLA, each valence and arousal value
is annotated every 40 milliseconds frame, and in SEWA, annotations are performed every
100 milliseconds frame. In this study, predictions for valence and arousal were made on
these two data subsets. The proposed dimensional speech emotion recognition model was
trained and validated on the same training and development sets as in references [2,45,50].

4.2. Multitask Learning and Evaluation Metrics

The experiment used the evaluation index CCC (concordance correlation coefficient)
officially recommended by the AVEC Challenge. ρc is the concordance correlation coefficient
between the prediction values of emotion dimensions and the gold-standard measurement,
and the calculation formula is as follows:

ρc =
2ρσxσy

σ2
x + σ2

y +
(
µx − µy

)2 , (5)
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where ρ is the Pearson correlation coefficient between the time series prediction and the
gold standard, x is the predictive value of a certain emotional dimension, y is the gold
standard corresponding to x, σ2

x and σ2
y are the variance of two sequences, and µx and µy

are the mean of two sequences. In the valence–arousal emotion space, due to the strong
correlation between valence and arousal [2], a multi-task learning method is used to predict
both valence and arousal simultaneously in this study, and use CCC-based loss function
(Lc) as the objective function of the depth model. Lc be defined as:

Lc =
2− ρa

c − ρv
c

2
, (6)

where ρa
c and ρv

c are the CCC for valence and arousal, respectively.

4.3. Experimental Results
4.3.1. Benchmark Experiments

For the RECOLA dataset, a comparative experiment was conducted involving the
extraction of MFCC, the extended version of Geneva Minimalistic Acoustic Parameter Set
(eGeMAPS) [51], Modulation Spectral Feature (MSF), Modulation-filtered Cochleagram
(MRCG), and Multi-resolution Modulation-filtered Cochleagram (MMCG) features, as
well as LLD and HSF strategies. Firstly, the speech signals underwent pre-emphasis and
normalization operations. Subsequently, the processed data were segmented into multiple
sub-sequences, which were then used as inputs for the model. In the context of dimensional
emotion recognition, where valence and arousal values are annotated continuously over
a sequence of frames, the LLD-based strategy employed frame stacking to extract frame-
level feature sequences. Specifically, a four-frame stacking approach was used to obtain
frame-level features in the RECOLA dataset. On the other hand, the HSF-based strategy
involved applying statistical functions to compute 4 s long LLD features, which were
then offset by 40 milliseconds to generate frame-level feature sequences. To model these
feature sequences, Support Vector Regression (SVR) and a single-channel Long Short-Term
Memory (LSTM) were employed as baseline models. These baseline models were used for
comparison purposes in the experimentation.

The baseline LSTM network consists of an input layer, two hidden layers with
128 and 64 nodes, respectively, followed by a fully connected layer and a regression layer.
The hidden layers are connected using a fully connected layer with ReLU activation for
non-linearity. During model training, a dropout rate of 0.75 is applied before the regression
layer to prevent overfitting. Finally, the regression layer is used to predict the valence and
arousal values of emotions. Table 1 presents the prediction results of the two regression
models on different features using the RECOLA dataset. It is evident from the table that
MMCG features achieved the highest arousal prediction result (CCC of 0.742) using the
LSTM-based regression method, while they also yielded the highest valence prediction
result (CCC of 0.371) using the SVR-based regression method. Within the same regres-
sion model, auditory perception-based features (MSF, MRCG, and MMCG) outperformed
the acoustic features based on LLD and HSF in dimensional emotion recognition. This
observation highlights that auditory features extracted from the perspective of speech
perception exhibit stronger feature expression and better predictive power for valence and
arousal emotion dimensions compared to acoustic features extracted from the perspective
of speech generation.

Table 1. The CCC using different feature sets (RECOLA).

Feature
SVR LSTM

Arousal Valence Arousal Valence

MFCC_LLD 0.595 0.269 0.679 0.320
MFCC_HSF 0.606 0.305 0.651 0.331
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Table 1. Cont.

Feature
SVR LSTM

Arousal Valence Arousal Valence

eGeMAPS_LLD 0.610 0.293 0.662 0.312
eGeMAPS_HSF 0.602 0.314 0.701 0.329

MSF 0.641 0.304 0.709 0.368
MRCG 0.685 0.353 0.734 0.351
MMCG 0.694 0.371 0.742 0.362

4.3.2. Noise Environment Valence and Arousal Prediction

To further analyze the impact of noise environments on the dimensional emotion
recognition of different features, this study employed the same LSTM network to investigate
the performance of valence and arousal prediction with the addition of Gaussian white
noise at various SNR levels in the RECOLA dataset. Table 2 displays the valence and arousal
prediction for different features with long-time and delta feature conditions at various
SNR levels. The results indicate that the predictive ability of acoustic features in noisy
environments is significantly lower compared to that of auditory modulation-based features.
For instance, in a 20 dB SNR environment, the arousal CCC based on MFCC features is
only 0.426, whereas it increases to 0.772 when using MMCG features. Similarly, valence
CCC improves from 0.193 to 0.418. This indicates that the valence and arousal predictive
abilities of acoustic features are more susceptible to noise interference compared to auditory
features. Comparing the prediction of valence and arousal in noisy environments to those
in clean speech environments, there is a noticeable decrease in prediction performance.
Moreover, auditory perception-based features demonstrate a significant advantage in noise
robustness compared to acoustic features. MMCG consistently achieves the highest valence
and arousal CCC values across different SNR levels, suggesting that MMCG features
are more robust to noise overall. This advantage might stem from auditory modulation
filtering, which further decomposes the noisy signal, allowing extraction of low-frequency
information that remains relatively unaffected by noise interference.

Table 2. The CCC using different feature sets under different SNR (RECOLA).

Feature
0 dB 5 dB 10 dB 20 dB

Arousal Valence Arousal Valence Arousal Valence Arousal Valence

MFCC_HSF 0.361 0.173 0.367 0.182 0.403 0.195 0.426 0.193
eGeMAPS_HSF 0.403 0.202 0.421 0.196 0.446 0.201 0.451 0.203

MSF 0.594 0.252 0.548 0.266 0.478 0.318 0.574 0.226
MRCG 0.658 0.304 0.674 0.318 0.696 0.316 0.718 0.364
MMCG 0.700 0.344 0.744 0.400 0.750 0.446 0.772 0.418

4.3.3. Valence and Arousal Prediction Based on PA-Net

The parallel attention recurrent network, PA-net, captures the significant emotional
modulation features in the speech spectral–temporal modulation space from different
resolution MCG features and models their feature dependencies. Table 3 presents the
valence and arousal prediction results for single-channel LSTM, multi-channel LSTM,
and PA-net on the RECOLA and SEWA datasets. In the RECOLA experiments, training
sequences with a length of approximately 30 s were used, and testing did not require
segmentation. The highest CCC was achieved from PA-net on RECOLA, whose arousal and
valence were 0.859 and 0.529, respectively. Moreover, compared with the single-channel
LSTM, the arousal prediction was relatively improved by 15.7% (from 0.742 to 0.859), and
the valence prediction by 46.1% (from 0.362 to 0.529). In the SEWA experiments, due to
variable sequence lengths in the dataset, zero-padding was applied to align all sequences
before training the deep regression model. Sequence lengths were around 90 s, and testing
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did not involve segmentation or padding operations [49]. The highest CCC was achieved
from PA-net on SEWA, whose arousal and valence were 0.557 and 0.531, respectively, which
is consistent with the results obtained on RECOLA. The experimental results indicate that
PA-net outperforms single-channel and multi-channel LSTMs in both datasets for valence
and arousal prediction. This suggests that the attention-based parallel recurrent network is
better at modeling the dependency relationships of different scale MCG features, leading
to improved prediction performance.

Table 3. The CCC of different recurrent networks under RECOLA and SEWA datasets.

Dataset
Single-Channel LSTM Multi-Channel LSTM PA-Net

Arousal Valence Arousal Valence Arousal Valence

RECOLA 0.742 0.362 0.824 0.474 0.859 0.529

SEWA 0.472 0.342 0.523 0.519 0.557 0.531

In order to further analyze the dimension emotion recognition performance of PA-net
in noisy environments, this study compared the valence and arousal prediction results
of PA-net and LSTM networks at different signal-to-noise ratios (SNR) on the RECOLA
dataset. Table 4 presents the valence and arousal prediction CCC scores for PA-net and
LSTM networks under various SNR conditions. It can be seen that the prediction of
valence and arousal emotion is severely affected by the presence of noise. However, the
experimental findings indicate that PA-net outperforms the single-channel LSTM network
in valence and arousal prediction with higher CCC under varying SNR. This suggests that
PA-net exhibits superior noise robustness in predicting valence and arousal compared to
the single-channel LSTM network.

Table 4. The CCC using different deep models under different SNR.

Model
0 dB 5 dB 10 dB 20 dB

Arousal Valence Arousal Valence Arousal Valence Arousal Valence

LSTM 0.700 0.344 0.744 0.400 0.750 0.446 0.772 0.418
PA-net 0.743 0.372 0.779 0.427 0.795 0.463 0.817 0.476

Figure 4 illustrates the valence and arousal prediction examples of the single-channel
LSTM and PA-net models based on MMCG features. The green curves represent the
prediction sequences of arousal (Figure 4a) and valence (Figure 4b) from the single-channel
LSTM network in continuous speech signals. The orange curves depict the prediction
sequences of valence and arousal from the PA-net model in continuous speech signals. The
deep blue curves represent the corresponding ground truth values. From the figure, it can
be seen that for the prediction of arousal and valence, the PA-net obtains CCCs of 0.93 and
0.63, respectively, while the LSTM network obtains CCCs of 0.88 and 0.59, respectively.
This suggests that there is more significant variability in the valence and arousal prediction
values when modeling MCG features at different resolutions with LSTM. In contrast, PA-net
demonstrates a better capability to closely match the ground truth. This indicates that the
PA-net fits the ground truth curves better than the LSTM network.

Finally, this study compares the CCC scores obtained by different methods on the
RECOLA dataset, as shown in Table 5. The proposed emotion recognition approach
based on MCG features and PA-net achieves the best performance in both valence and
arousal predictions. Specifically, PA-net outperforms the multi-channel approach by an
improvement of 5.8% in arousal prediction and 10% in valence prediction. This suggests
that incorporating an attention mechanism for advanced feature fusion yields better results
than a simple concatenated approach for feature fusion.
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Table 5. The CCC comparison under different features and models on the RECOLA dataset.

Method Feature Model Arousal Valence

Zhang et al. [52] eGeMAPS RNN 0.783 0.495
Avila et al. [45] MSFs Single-channel LSTM 0.795 0.265
Peng et al. [2] MMCG Multi-channel LSTM 0.812 0.481

Proposed method MMCG PA-net 0.859 0.529

5. Conclusions

Speech emotion recognition plays a crucial role in enabling natural human–robot
interaction. In this study, we propose a dimension emotion recognition method based
on multi-resolution modulation cochleargram (MMCG) and parallel attention recurrent
network (PA-net). The PA-net is utilized to capture temporal and contextual information at
different scales from MMCG features and establish multiple temporal dependencies to track
the dynamic changes of dimensional emotions in auditory representation sequences. Our
experimental findings consistently demonstrate the superiority of our proposed method,
as it consistently achieves the highest concordance correlation coefficient values for valence
and arousal prediction across a range of signal-to-noise ratio levels. At the feature level,
MMCG surpasses other assessed features in its ability to predict valence and arousal, with
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remarkable efficacy particularly in high signal-to-noise ratio scenarios. Furthermore, at the
model level, the PA-net exhibits the highest predictive performance for both valence and
arousal, significantly outperforming alternative regression models.

In summary, our results collectively underscore the potency and effectiveness of our
approach in advancing the field of dimensional emotion recognition. In the future, we plan
to conduct further research on modulation cochleargram features based on human auditory
characteristics, and then plan to use some pre-trained models to obtain salient emotional
information from MMCG features.
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ARNN Attention-based recurrent neural network
ASRNN Attention-based sliding recurrent neural network
BLSTM Bidirectional LSTM
CCC Concordance correlation coefficient
CNN Convolutional neural network
CRNN Convolutional and recurrent neural network
eGeMAPS Extended version of Geneva Minimalistic Acoustic Parameter Set
HSF High-level statistics function
HRI Human–robot interaction
IC Inferior colliculus
IHC Inner hair cells
LLD Low-level descriptors
LSTM Long short-term memory
MFCC Mel frequency cepstral coefficient
MCG Modulation-filtered cochleagram
MMCG Multi-resolution modulation-filtered cochleagram
MRCG Multi-resolution cochleagram
MSF Modulation spectral feature
RNN Recurrent neural network
PA-net Parallel attention recurrent network
RECOLA Remote collaborative and affective interactions
SEWA Sentiment analysis in the wild
SNR Signal-to-noise ratio
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